Vorlesung Moderne Methoden der Approximationstheorie

Vorlesung

Moderne Methoden der Approximationstheorie

Prof. Dr. Aicke Hinrichs




Diese Vorlesung findet im SS 2012 vierstündig statt.

Inhalt der Vorlesung: Viele praktische Probleme in Wissenschaft und Technik verlangen die Extraktion wichtiger Größen aus gewonnenen Daten. Beispiele finden sich in Signal- und Bildanalyse. Ist die Informationsgewinnung linear, so ist die Lösung des Problems oft die Lösung eines linearen Gleichungssystems. Die Ergebnisse der linearen Algebra legen nun nahe, daß man mindestens soviele Messungen braucht wie die Länge des Signals angibt. Ohne zusätzliche Information ist das auch der Fall.

Aber viele praktisch auftretende Signale sind nicht zufällig, sie haben Struktur und sind "dünn" bezüglich geeigneter Basisdarstellungen, d.h. nur wenige Koeffizienten in der Entwicklung nach der Basis sind signifikant. Das Verfahren des Compressed Sensing ermöglicht es, solche Signale aus wesentlich weniger Informationen als der Signaldimension zu rekonstruieren. Theorie und Praxis dazu haben sich in den letzten Jahren stark entwickelt.

Zentraler Inhalt der Vorlesung ist eine Einführung in das Compressed Sensing. Dazu benötigt man viele fundamentale Ideen aus verschiedenen Bereichen der Mathematik wie konvexer Optimierung, Approximationstheorie und Wahrscheinlichkeitsrechnung. Das verwandte Problem der Matrixvervollständigung unter Rangrestriktion werden wir ebenfalls behandeln. Bestandteil der Übung wird auch die Umsetzung einiger Ideen in Matlab-Programme sein.

Termine der Vorlesungen: Dienstag 14:00-15:30 im SR 119 August-Bebel-Str. 4 und Donnerstag, 10:00-11:30 im SR 127 Carl-Zeiß-Straße 3.
Die erste Vorlesung ist am Dienstag, den 17.4.2012.

Termin der Übung: Freitag 8:30-10:00, im Hörsaal 5 Abbeanum.
Die Übung beginnt in der zweiten Vorlesungswoche, also am 26.4.

Weitere Infos, insbesondere Übungsblätter und wichtige Ankündigungen gibt es hier im CAJ.